Linux server.nvwebsoft.co.in 3.10.0-1160.114.2.el7.x86_64 #1 SMP Wed Mar 20 15:54:52 UTC 2024 x86_64
Apache
: 162.240.12.249 | : 3.135.214.226
202 Domain
8.1.31
nbspublicschool
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
README
+ Create Folder
+ Create File
/
usr /
share /
doc /
python-docs-2.7.5 /
html /
[ HOME SHELL ]
Name
Size
Permission
Action
_images
[ DIR ]
drwxr-xr-x
_sources
[ DIR ]
drwxr-xr-x
_static
[ DIR ]
drwxr-xr-x
c-api
[ DIR ]
drwxr-xr-x
distutils
[ DIR ]
drwxr-xr-x
extending
[ DIR ]
drwxr-xr-x
faq
[ DIR ]
drwxr-xr-x
howto
[ DIR ]
drwxr-xr-x
install
[ DIR ]
drwxr-xr-x
library
[ DIR ]
drwxr-xr-x
reference
[ DIR ]
drwxr-xr-x
tutorial
[ DIR ]
drwxr-xr-x
using
[ DIR ]
drwxr-xr-x
whatsnew
[ DIR ]
drwxr-xr-x
.buildinfo
230
B
-rw-r--r--
about.html
7.49
KB
-rw-r--r--
bugs.html
9.83
KB
-rw-r--r--
contents.html
391.2
KB
-rw-r--r--
copyright.html
5.79
KB
-rw-r--r--
download.html
6.5
KB
-rw-r--r--
genindex-A.html
51.62
KB
-rw-r--r--
genindex-B.html
38.05
KB
-rw-r--r--
genindex-C.html
91.96
KB
-rw-r--r--
genindex-D.html
57.16
KB
-rw-r--r--
genindex-E.html
76.25
KB
-rw-r--r--
genindex-F.html
53.13
KB
-rw-r--r--
genindex-G.html
72.47
KB
-rw-r--r--
genindex-H.html
33.95
KB
-rw-r--r--
genindex-I.html
67.52
KB
-rw-r--r--
genindex-J.html
8.75
KB
-rw-r--r--
genindex-K.html
11.99
KB
-rw-r--r--
genindex-L.html
42.92
KB
-rw-r--r--
genindex-M.html
50.9
KB
-rw-r--r--
genindex-N.html
31.77
KB
-rw-r--r--
genindex-O.html
38.94
KB
-rw-r--r--
genindex-P.html
179.07
KB
-rw-r--r--
genindex-Q.html
10.93
KB
-rw-r--r--
genindex-R.html
75.57
KB
-rw-r--r--
genindex-S.html
120.13
KB
-rw-r--r--
genindex-Symbols.html
20.06
KB
-rw-r--r--
genindex-T.html
47.1
KB
-rw-r--r--
genindex-U.html
35.49
KB
-rw-r--r--
genindex-V.html
12.99
KB
-rw-r--r--
genindex-W.html
24.84
KB
-rw-r--r--
genindex-X.html
10.93
KB
-rw-r--r--
genindex-Y.html
7.58
KB
-rw-r--r--
genindex-Z.html
7.63
KB
-rw-r--r--
genindex-_.html
40.6
KB
-rw-r--r--
genindex-all.html
1.14
MB
-rw-r--r--
genindex.html
7.5
KB
-rw-r--r--
glossary.html
76.88
KB
-rw-r--r--
index.html
8.61
KB
-rw-r--r--
license.html
59.67
KB
-rw-r--r--
modindex.html
109.72
KB
-rw-r--r--
objects.inv
112.13
KB
-rw-r--r--
py-modindex.html
109.72
KB
-rw-r--r--
search.html
4.48
KB
-rw-r--r--
searchindex.js
992.24
KB
-rw-r--r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : glossary.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Glossary — Python 2.7.5 documentation</title> <link rel="stylesheet" href="_static/default.css" type="text/css" /> <link rel="stylesheet" href="_static/pygments.css" type="text/css" /> <script type="text/javascript"> var DOCUMENTATION_OPTIONS = { URL_ROOT: '', VERSION: '2.7.5', COLLAPSE_INDEX: false, FILE_SUFFIX: '.html', HAS_SOURCE: true }; </script> <script type="text/javascript" src="_static/jquery.js"></script> <script type="text/javascript" src="_static/underscore.js"></script> <script type="text/javascript" src="_static/doctools.js"></script> <script type="text/javascript" src="_static/sidebar.js"></script> <link rel="search" type="application/opensearchdescription+xml" title="Search within Python 2.7.5 documentation" href="_static/opensearch.xml"/> <link rel="author" title="About these documents" href="about.html" /> <link rel="copyright" title="Copyright" href="copyright.html" /> <link rel="top" title="Python 2.7.5 documentation" href="index.html" /> <link rel="next" title="About these documents" href="about.html" /> <link rel="prev" title="“Why is Python Installed on my Computer?” FAQ" href="faq/installed.html" /> <link rel="shortcut icon" type="image/png" href="_static/py.png" /> <script type="text/javascript" src="_static/copybutton.js"></script> </head> <body> <div class="related"> <h3>Navigation</h3> <ul> <li class="right" style="margin-right: 10px"> <a href="genindex.html" title="General Index" accesskey="I">index</a></li> <li class="right" > <a href="py-modindex.html" title="Python Module Index" >modules</a> |</li> <li class="right" > <a href="about.html" title="About these documents" accesskey="N">next</a> |</li> <li class="right" > <a href="faq/installed.html" title="“Why is Python Installed on my Computer?” FAQ" accesskey="P">previous</a> |</li> <li><img src="_static/py.png" alt="" style="vertical-align: middle; margin-top: -1px"/></li> <li><a href="http://www.python.org/">Python</a> »</li> <li> <a href="index.html">Python 2.7.5 documentation</a> » </li> </ul> </div> <div class="document"> <div class="documentwrapper"> <div class="bodywrapper"> <div class="body"> <div class="section" id="glossary"> <span id="id1"></span><h1>Glossary<a class="headerlink" href="#glossary" title="Permalink to this headline">¶</a></h1> <dl class="glossary docutils"> <dt id="term-"><tt class="docutils literal"><span class="pre">>>></span></tt></dt> <dd>The default Python prompt of the interactive shell. Often seen for code examples which can be executed interactively in the interpreter.</dd> <dt id="term-1"><tt class="docutils literal"><span class="pre">...</span></tt></dt> <dd>The default Python prompt of the interactive shell when entering code for an indented code block or within a pair of matching left and right delimiters (parentheses, square brackets or curly braces).</dd> <dt id="term-to3">2to3</dt> <dd><p class="first">A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can be detected by parsing the source and traversing the parse tree.</p> <p class="last">2to3 is available in the standard library as <a class="reference internal" href="library/2to3.html#module-lib2to3" title="lib2to3: the 2to3 library"><tt class="xref py py-mod docutils literal"><span class="pre">lib2to3</span></tt></a>; a standalone entry point is provided as <tt class="file docutils literal"><span class="pre">Tools/scripts/2to3</span></tt>. See <a class="reference internal" href="library/2to3.html#to3-reference"><em>2to3 - Automated Python 2 to 3 code translation</em></a>.</p> </dd> <dt id="term-abstract-base-class">abstract base class</dt> <dd>Abstract base classes complement <a class="reference internal" href="#term-duck-typing"><em class="xref std std-term">duck-typing</em></a> by providing a way to define interfaces when other techniques like <a class="reference internal" href="library/functions.html#hasattr" title="hasattr"><tt class="xref py py-func docutils literal"><span class="pre">hasattr()</span></tt></a> would be clumsy or subtly wrong (for example with <a class="reference internal" href="reference/datamodel.html#new-style-special-lookup"><em>magic methods</em></a>). ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized by <a class="reference internal" href="library/functions.html#isinstance" title="isinstance"><tt class="xref py py-func docutils literal"><span class="pre">isinstance()</span></tt></a> and <a class="reference internal" href="library/functions.html#issubclass" title="issubclass"><tt class="xref py py-func docutils literal"><span class="pre">issubclass()</span></tt></a>; see the <a class="reference internal" href="library/abc.html#module-abc" title="abc: Abstract base classes according to PEP 3119."><tt class="xref py py-mod docutils literal"><span class="pre">abc</span></tt></a> module documentation. Python comes with many built-in ABCs for data structures (in the <a class="reference internal" href="library/collections.html#module-collections" title="collections: High-performance datatypes"><tt class="xref py py-mod docutils literal"><span class="pre">collections</span></tt></a> module), numbers (in the <a class="reference internal" href="library/numbers.html#module-numbers" title="numbers: Numeric abstract base classes (Complex, Real, Integral, etc.)."><tt class="xref py py-mod docutils literal"><span class="pre">numbers</span></tt></a> module), and streams (in the <a class="reference internal" href="library/io.html#module-io" title="io: Core tools for working with streams."><tt class="xref py py-mod docutils literal"><span class="pre">io</span></tt></a> module). You can create your own ABCs with the <a class="reference internal" href="library/abc.html#module-abc" title="abc: Abstract base classes according to PEP 3119."><tt class="xref py py-mod docutils literal"><span class="pre">abc</span></tt></a> module.</dd> <dt id="term-argument">argument</dt> <dd><p class="first">A value passed to a <a class="reference internal" href="#term-function"><em class="xref std std-term">function</em></a> (or <a class="reference internal" href="#term-method"><em class="xref std std-term">method</em></a>) when calling the function. There are two types of arguments:</p> <ul> <li><p class="first"><em class="dfn">keyword argument</em>: an argument preceded by an identifier (e.g. <tt class="docutils literal"><span class="pre">name=</span></tt>) in a function call or passed as a value in a dictionary preceded by <tt class="docutils literal"><span class="pre">**</span></tt>. For example, <tt class="docutils literal"><span class="pre">3</span></tt> and <tt class="docutils literal"><span class="pre">5</span></tt> are both keyword arguments in the following calls to <a class="reference internal" href="library/functions.html#complex" title="complex"><tt class="xref py py-func docutils literal"><span class="pre">complex()</span></tt></a>:</p> <div class="highlight-python"><div class="highlight"><pre><span class="nb">complex</span><span class="p">(</span><span class="n">real</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">imag</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span> <span class="nb">complex</span><span class="p">(</span><span class="o">**</span><span class="p">{</span><span class="s">'real'</span><span class="p">:</span> <span class="mi">3</span><span class="p">,</span> <span class="s">'imag'</span><span class="p">:</span> <span class="mi">5</span><span class="p">})</span> </pre></div> </div> </li> <li><p class="first"><em class="dfn">positional argument</em>: an argument that is not a keyword argument. Positional arguments can appear at the beginning of an argument list and/or be passed as elements of an <a class="reference internal" href="#term-iterable"><em class="xref std std-term">iterable</em></a> preceded by <tt class="docutils literal"><span class="pre">*</span></tt>. For example, <tt class="docutils literal"><span class="pre">3</span></tt> and <tt class="docutils literal"><span class="pre">5</span></tt> are both positional arguments in the following calls:</p> <div class="highlight-python"><div class="highlight"><pre><span class="nb">complex</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span> <span class="nb">complex</span><span class="p">(</span><span class="o">*</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">5</span><span class="p">))</span> </pre></div> </div> </li> </ul> <p>Arguments are assigned to the named local variables in a function body. See the <a class="reference internal" href="reference/expressions.html#calls"><em>Calls</em></a> section for the rules governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned to the local variable.</p> <p class="last">See also the <a class="reference internal" href="#term-parameter"><em class="xref std std-term">parameter</em></a> glossary entry and the FAQ question on <a class="reference internal" href="faq/programming.html#faq-argument-vs-parameter"><em>the difference between arguments and parameters</em></a>.</p> </dd> <dt id="term-attribute">attribute</dt> <dd>A value associated with an object which is referenced by name using dotted expressions. For example, if an object <em>o</em> has an attribute <em>a</em> it would be referenced as <em>o.a</em>.</dd> <dt id="term-bdfl">BDFL</dt> <dd>Benevolent Dictator For Life, a.k.a. <a class="reference external" href="http://www.python.org/~guido/">Guido van Rossum</a>, Python’s creator.</dd> <dt id="term-bytes-like-object">bytes-like object</dt> <dd>An object that supports the <a class="reference internal" href="c-api/buffer.html#bufferobjects"><em>buffer protocol</em></a>, like <a class="reference internal" href="library/functions.html#str" title="str"><tt class="xref py py-class docutils literal"><span class="pre">str</span></tt></a>, <a class="reference internal" href="library/functions.html#bytearray" title="bytearray"><tt class="xref py py-class docutils literal"><span class="pre">bytearray</span></tt></a> or <a class="reference internal" href="library/stdtypes.html#memoryview" title="memoryview"><tt class="xref py py-class docutils literal"><span class="pre">memoryview</span></tt></a>. Bytes-like objects can be used for various operations that expect binary data, such as compression, saving to a binary file or sending over a socket. Some operations need the binary data to be mutable, in which case not all bytes-like objects can apply.</dd> <dt id="term-bytecode">bytecode</dt> <dd><p class="first">Python source code is compiled into bytecode, the internal representation of a Python program in the CPython interpreter. The bytecode is also cached in <tt class="docutils literal"><span class="pre">.pyc</span></tt> and <tt class="docutils literal"><span class="pre">.pyo</span></tt> files so that executing the same file is faster the second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a <a class="reference internal" href="#term-virtual-machine"><em class="xref std std-term">virtual machine</em></a> that executes the machine code corresponding to each bytecode. Do note that bytecodes are not expected to work between different Python virtual machines, nor to be stable between Python releases.</p> <p class="last">A list of bytecode instructions can be found in the documentation for <a class="reference internal" href="library/dis.html#bytecodes"><em>the dis module</em></a>.</p> </dd> <dt id="term-class">class</dt> <dd>A template for creating user-defined objects. Class definitions normally contain method definitions which operate on instances of the class.</dd> <dt id="term-classic-class">classic class</dt> <dd>Any class which does not inherit from <a class="reference internal" href="library/functions.html#object" title="object"><tt class="xref py py-class docutils literal"><span class="pre">object</span></tt></a>. See <a class="reference internal" href="#term-new-style-class"><em class="xref std std-term">new-style class</em></a>. Classic classes have been removed in Python 3.</dd> <dt id="term-coercion">coercion</dt> <dd>The implicit conversion of an instance of one type to another during an operation which involves two arguments of the same type. For example, <tt class="docutils literal"><span class="pre">int(3.15)</span></tt> converts the floating point number to the integer <tt class="docutils literal"><span class="pre">3</span></tt>, but in <tt class="docutils literal"><span class="pre">3+4.5</span></tt>, each argument is of a different type (one int, one float), and both must be converted to the same type before they can be added or it will raise a <tt class="docutils literal"><span class="pre">TypeError</span></tt>. Coercion between two operands can be performed with the <tt class="docutils literal"><span class="pre">coerce</span></tt> built-in function; thus, <tt class="docutils literal"><span class="pre">3+4.5</span></tt> is equivalent to calling <tt class="docutils literal"><span class="pre">operator.add(*coerce(3,</span> <span class="pre">4.5))</span></tt> and results in <tt class="docutils literal"><span class="pre">operator.add(3.0,</span> <span class="pre">4.5)</span></tt>. Without coercion, all arguments of even compatible types would have to be normalized to the same value by the programmer, e.g., <tt class="docutils literal"><span class="pre">float(3)+4.5</span></tt> rather than just <tt class="docutils literal"><span class="pre">3+4.5</span></tt>.</dd> <dt id="term-complex-number">complex number</dt> <dd>An extension of the familiar real number system in which all numbers are expressed as a sum of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of <tt class="docutils literal"><span class="pre">-1</span></tt>), often written <tt class="docutils literal"><span class="pre">i</span></tt> in mathematics or <tt class="docutils literal"><span class="pre">j</span></tt> in engineering. Python has built-in support for complex numbers, which are written with this latter notation; the imaginary part is written with a <tt class="docutils literal"><span class="pre">j</span></tt> suffix, e.g., <tt class="docutils literal"><span class="pre">3+1j</span></tt>. To get access to complex equivalents of the <a class="reference internal" href="library/math.html#module-math" title="math: Mathematical functions (sin() etc.)."><tt class="xref py py-mod docutils literal"><span class="pre">math</span></tt></a> module, use <a class="reference internal" href="library/cmath.html#module-cmath" title="cmath: Mathematical functions for complex numbers."><tt class="xref py py-mod docutils literal"><span class="pre">cmath</span></tt></a>. Use of complex numbers is a fairly advanced mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.</dd> <dt id="term-context-manager">context manager</dt> <dd>An object which controls the environment seen in a <a class="reference internal" href="reference/compound_stmts.html#with"><tt class="xref std std-keyword docutils literal"><span class="pre">with</span></tt></a> statement by defining <a class="reference internal" href="reference/datamodel.html#object.__enter__" title="object.__enter__"><tt class="xref py py-meth docutils literal"><span class="pre">__enter__()</span></tt></a> and <a class="reference internal" href="reference/datamodel.html#object.__exit__" title="object.__exit__"><tt class="xref py py-meth docutils literal"><span class="pre">__exit__()</span></tt></a> methods. See <span class="target" id="index-0"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0343"><strong>PEP 343</strong></a>.</dd> <dt id="term-cpython">CPython</dt> <dd>The canonical implementation of the Python programming language, as distributed on <a class="reference external" href="http://python.org">python.org</a>. The term “CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.</dd> <dt id="term-decorator">decorator</dt> <dd><p class="first">A function returning another function, usually applied as a function transformation using the <tt class="docutils literal"><span class="pre">@wrapper</span></tt> syntax. Common examples for decorators are <a class="reference internal" href="library/functions.html#classmethod" title="classmethod"><tt class="xref py py-func docutils literal"><span class="pre">classmethod()</span></tt></a> and <a class="reference internal" href="library/functions.html#staticmethod" title="staticmethod"><tt class="xref py py-func docutils literal"><span class="pre">staticmethod()</span></tt></a>.</p> <p>The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:</p> <div class="highlight-python"><div class="highlight"><pre><span class="k">def</span> <span class="nf">f</span><span class="p">(</span><span class="o">...</span><span class="p">):</span> <span class="o">...</span> <span class="n">f</span> <span class="o">=</span> <span class="nb">staticmethod</span><span class="p">(</span><span class="n">f</span><span class="p">)</span> <span class="nd">@staticmethod</span> <span class="k">def</span> <span class="nf">f</span><span class="p">(</span><span class="o">...</span><span class="p">):</span> <span class="o">...</span> </pre></div> </div> <p class="last">The same concept exists for classes, but is less commonly used there. See the documentation for <a class="reference internal" href="reference/compound_stmts.html#function"><em>function definitions</em></a> and <a class="reference internal" href="reference/compound_stmts.html#class"><em>class definitions</em></a> for more about decorators.</p> </dd> <dt id="term-descriptor">descriptor</dt> <dd><p class="first">Any <em>new-style</em> object which defines the methods <a class="reference internal" href="reference/datamodel.html#object.__get__" title="object.__get__"><tt class="xref py py-meth docutils literal"><span class="pre">__get__()</span></tt></a>, <a class="reference internal" href="reference/datamodel.html#object.__set__" title="object.__set__"><tt class="xref py py-meth docutils literal"><span class="pre">__set__()</span></tt></a>, or <a class="reference internal" href="reference/datamodel.html#object.__delete__" title="object.__delete__"><tt class="xref py py-meth docutils literal"><span class="pre">__delete__()</span></tt></a>. When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using <em>a.b</em> to get, set or delete an attribute looks up the object named <em>b</em> in the class dictionary for <em>a</em>, but if <em>b</em> is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python because they are the basis for many features including functions, methods, properties, class methods, static methods, and reference to super classes.</p> <p class="last">For more information about descriptors’ methods, see <a class="reference internal" href="reference/datamodel.html#descriptors"><em>Implementing Descriptors</em></a>.</p> </dd> <dt id="term-dictionary">dictionary</dt> <dd>An associative array, where arbitrary keys are mapped to values. The keys can be any object with <a class="reference internal" href="reference/datamodel.html#object.__hash__" title="object.__hash__"><tt class="xref py py-meth docutils literal"><span class="pre">__hash__()</span></tt></a> and <a class="reference internal" href="reference/datamodel.html#object.__eq__" title="object.__eq__"><tt class="xref py py-meth docutils literal"><span class="pre">__eq__()</span></tt></a> methods. Called a hash in Perl.</dd> <dt id="term-docstring">docstring</dt> <dd>A string literal which appears as the first expression in a class, function or module. While ignored when the suite is executed, it is recognized by the compiler and put into the <tt class="xref py py-attr docutils literal"><span class="pre">__doc__</span></tt> attribute of the enclosing class, function or module. Since it is available via introspection, it is the canonical place for documentation of the object.</dd> <dt id="term-duck-typing">duck-typing</dt> <dd>A programming style which does not look at an object’s type to determine if it has the right interface; instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests using <a class="reference internal" href="library/functions.html#type" title="type"><tt class="xref py py-func docutils literal"><span class="pre">type()</span></tt></a> or <a class="reference internal" href="library/functions.html#isinstance" title="isinstance"><tt class="xref py py-func docutils literal"><span class="pre">isinstance()</span></tt></a>. (Note, however, that duck-typing can be complemented with <a class="reference internal" href="#term-abstract-base-class"><em class="xref std std-term">abstract base classes</em></a>.) Instead, it typically employs <a class="reference internal" href="library/functions.html#hasattr" title="hasattr"><tt class="xref py py-func docutils literal"><span class="pre">hasattr()</span></tt></a> tests or <a class="reference internal" href="#term-eafp"><em class="xref std std-term">EAFP</em></a> programming.</dd> <dt id="term-eafp">EAFP</dt> <dd>Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized by the presence of many <a class="reference internal" href="reference/compound_stmts.html#try"><tt class="xref std std-keyword docutils literal"><span class="pre">try</span></tt></a> and <a class="reference internal" href="reference/compound_stmts.html#except"><tt class="xref std std-keyword docutils literal"><span class="pre">except</span></tt></a> statements. The technique contrasts with the <a class="reference internal" href="#term-lbyl"><em class="xref std std-term">LBYL</em></a> style common to many other languages such as C.</dd> <dt id="term-expression">expression</dt> <dd>A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation of expression elements like literals, names, attribute access, operators or function calls which all return a value. In contrast to many other languages, not all language constructs are expressions. There are also <a class="reference internal" href="#term-statement"><em class="xref std std-term">statement</em></a>s which cannot be used as expressions, such as <a class="reference internal" href="reference/simple_stmts.html#print"><tt class="xref std std-keyword docutils literal"><span class="pre">print</span></tt></a> or <a class="reference internal" href="reference/compound_stmts.html#if"><tt class="xref std std-keyword docutils literal"><span class="pre">if</span></tt></a>. Assignments are also statements, not expressions.</dd> <dt id="term-extension-module">extension module</dt> <dd>A module written in C or C++, using Python’s C API to interact with the core and with user code.</dd> <dt id="term-file-object">file object</dt> <dd><p class="first">An object exposing a file-oriented API (with methods such as <tt class="xref py py-meth docutils literal"><span class="pre">read()</span></tt> or <tt class="xref py py-meth docutils literal"><span class="pre">write()</span></tt>) to an underlying resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes, etc.). File objects are also called <em class="dfn">file-like objects</em> or <em class="dfn">streams</em>.</p> <p class="last">There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces are defined in the <a class="reference internal" href="library/io.html#module-io" title="io: Core tools for working with streams."><tt class="xref py py-mod docutils literal"><span class="pre">io</span></tt></a> module. The canonical way to create a file object is by using the <a class="reference internal" href="library/functions.html#open" title="open"><tt class="xref py py-func docutils literal"><span class="pre">open()</span></tt></a> function.</p> </dd> <dt id="term-file-like-object">file-like object</dt> <dd>A synonym for <a class="reference internal" href="#term-file-object"><em class="xref std std-term">file object</em></a>.</dd> <dt id="term-finder">finder</dt> <dd>An object that tries to find the <a class="reference internal" href="#term-loader"><em class="xref std std-term">loader</em></a> for a module. It must implement a method named <tt class="xref py py-meth docutils literal"><span class="pre">find_module()</span></tt>. See <span class="target" id="index-1"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0302"><strong>PEP 302</strong></a> for details.</dd> <dt id="term-floor-division">floor division</dt> <dd>Mathematical division that rounds down to nearest integer. The floor division operator is <tt class="docutils literal"><span class="pre">//</span></tt>. For example, the expression <tt class="docutils literal"><span class="pre">11</span> <span class="pre">//</span> <span class="pre">4</span></tt> evaluates to <tt class="docutils literal"><span class="pre">2</span></tt> in contrast to the <tt class="docutils literal"><span class="pre">2.75</span></tt> returned by float true division. Note that <tt class="docutils literal"><span class="pre">(-11)</span> <span class="pre">//</span> <span class="pre">4</span></tt> is <tt class="docutils literal"><span class="pre">-3</span></tt> because that is <tt class="docutils literal"><span class="pre">-2.75</span></tt> rounded <em>downward</em>. See <span class="target" id="index-2"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0238"><strong>PEP 238</strong></a>.</dd> <dt id="term-function">function</dt> <dd>A series of statements which returns some value to a caller. It can also be passed zero or more <a class="reference internal" href="#term-argument"><em class="xref std std-term">arguments</em></a> which may be used in the execution of the body. See also <a class="reference internal" href="#term-parameter"><em class="xref std std-term">parameter</em></a>, <a class="reference internal" href="#term-method"><em class="xref std std-term">method</em></a>, and the <a class="reference internal" href="reference/compound_stmts.html#function"><em>Function definitions</em></a> section.</dd> <dt id="term-future">__future__</dt> <dd><p class="first">A pseudo-module which programmers can use to enable new language features which are not compatible with the current interpreter. For example, the expression <tt class="docutils literal"><span class="pre">11/4</span></tt> currently evaluates to <tt class="docutils literal"><span class="pre">2</span></tt>. If the module in which it is executed had enabled <em>true division</em> by executing:</p> <div class="highlight-python"><div class="highlight"><pre><span class="kn">from</span> <span class="nn">__future__</span> <span class="kn">import</span> <span class="n">division</span> </pre></div> </div> <p>the expression <tt class="docutils literal"><span class="pre">11/4</span></tt> would evaluate to <tt class="docutils literal"><span class="pre">2.75</span></tt>. By importing the <a class="reference internal" href="library/__future__.html#module-__future__" title="__future__: Future statement definitions"><tt class="xref py py-mod docutils literal"><span class="pre">__future__</span></tt></a> module and evaluating its variables, you can see when a new feature was first added to the language and when it will become the default:</p> <div class="last highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">__future__</span> <span class="gp">>>> </span><span class="n">__future__</span><span class="o">.</span><span class="n">division</span> <span class="go">_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)</span> </pre></div> </div> </dd> <dt id="term-garbage-collection">garbage collection</dt> <dd>The process of freeing memory when it is not used anymore. Python performs garbage collection via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.</dd> <dt id="term-generator">generator</dt> <dd>A function which returns an iterator. It looks like a normal function except that it contains <a class="reference internal" href="reference/simple_stmts.html#yield"><tt class="xref std std-keyword docutils literal"><span class="pre">yield</span></tt></a> statements for producing a series a values usable in a for-loop or that can be retrieved one at a time with the <a class="reference internal" href="library/functions.html#next" title="next"><tt class="xref py py-func docutils literal"><span class="pre">next()</span></tt></a> function. Each <a class="reference internal" href="reference/simple_stmts.html#yield"><tt class="xref std std-keyword docutils literal"><span class="pre">yield</span></tt></a> temporarily suspends processing, remembering the location execution state (including local variables and pending try-statements). When the generator resumes, it picks-up where it left-off (in contrast to functions which start fresh on every invocation).</dd> <dt id="term-generator-expression">generator expression</dt> <dd><p class="first">An expression that returns an iterator. It looks like a normal expression followed by a <a class="reference internal" href="reference/compound_stmts.html#for"><tt class="xref std std-keyword docutils literal"><span class="pre">for</span></tt></a> expression defining a loop variable, range, and an optional <a class="reference internal" href="reference/compound_stmts.html#if"><tt class="xref std std-keyword docutils literal"><span class="pre">if</span></tt></a> expression. The combined expression generates values for an enclosing function:</p> <div class="last highlight-python"><div class="highlight"><pre><span class="gp">>>> </span><span class="nb">sum</span><span class="p">(</span><span class="n">i</span><span class="o">*</span><span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">))</span> <span class="c"># sum of squares 0, 1, 4, ... 81</span> <span class="go">285</span> </pre></div> </div> </dd> <dt id="term-gil">GIL</dt> <dd>See <a class="reference internal" href="#term-global-interpreter-lock"><em class="xref std std-term">global interpreter lock</em></a>.</dd> <dt id="term-global-interpreter-lock">global interpreter lock</dt> <dd><p class="first">The mechanism used by the <a class="reference internal" href="#term-cpython"><em class="xref std std-term">CPython</em></a> interpreter to assure that only one thread executes Python <a class="reference internal" href="#term-bytecode"><em class="xref std std-term">bytecode</em></a> at a time. This simplifies the CPython implementation by making the object model (including critical built-in types such as <a class="reference internal" href="library/stdtypes.html#dict" title="dict"><tt class="xref py py-class docutils literal"><span class="pre">dict</span></tt></a>) implicitly safe against concurrent access. Locking the entire interpreter makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines.</p> <p>However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing I/O.</p> <p class="last">Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granularity) have not been successful because performance suffered in the common single-processor case. It is believed that overcoming this performance issue would make the implementation much more complicated and therefore costlier to maintain.</p> </dd> <dt id="term-hashable">hashable</dt> <dd><p class="first">An object is <em>hashable</em> if it has a hash value which never changes during its lifetime (it needs a <a class="reference internal" href="reference/datamodel.html#object.__hash__" title="object.__hash__"><tt class="xref py py-meth docutils literal"><span class="pre">__hash__()</span></tt></a> method), and can be compared to other objects (it needs an <a class="reference internal" href="reference/datamodel.html#object.__eq__" title="object.__eq__"><tt class="xref py py-meth docutils literal"><span class="pre">__eq__()</span></tt></a> or <a class="reference internal" href="reference/datamodel.html#object.__cmp__" title="object.__cmp__"><tt class="xref py py-meth docutils literal"><span class="pre">__cmp__()</span></tt></a> method). Hashable objects which compare equal must have the same hash value.</p> <p>Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash value internally.</p> <p class="last">All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal (except with themselves), and their hash value is their <a class="reference internal" href="library/functions.html#id" title="id"><tt class="xref py py-func docutils literal"><span class="pre">id()</span></tt></a>.</p> </dd> <dt id="term-idle">IDLE</dt> <dd>An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which ships with the standard distribution of Python.</dd> <dt id="term-immutable">immutable</dt> <dd>An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot be altered. A new object has to be created if a different value has to be stored. They play an important role in places where a constant hash value is needed, for example as a key in a dictionary.</dd> <dt id="term-integer-division">integer division</dt> <dd>Mathematical division discarding any remainder. For example, the expression <tt class="docutils literal"><span class="pre">11/4</span></tt> currently evaluates to <tt class="docutils literal"><span class="pre">2</span></tt> in contrast to the <tt class="docutils literal"><span class="pre">2.75</span></tt> returned by float division. Also called <em>floor division</em>. When dividing two integers the outcome will always be another integer (having the floor function applied to it). However, if one of the operands is another numeric type (such as a <a class="reference internal" href="library/functions.html#float" title="float"><tt class="xref py py-class docutils literal"><span class="pre">float</span></tt></a>), the result will be coerced (see <a class="reference internal" href="#term-coercion"><em class="xref std std-term">coercion</em></a>) to a common type. For example, an integer divided by a float will result in a float value, possibly with a decimal fraction. Integer division can be forced by using the <tt class="docutils literal"><span class="pre">//</span></tt> operator instead of the <tt class="docutils literal"><span class="pre">/</span></tt> operator. See also <a class="reference internal" href="#term-future"><em class="xref std std-term">__future__</em></a>.</dd> <dt id="term-importer">importer</dt> <dd>An object that both finds and loads a module; both a <a class="reference internal" href="#term-finder"><em class="xref std std-term">finder</em></a> and <a class="reference internal" href="#term-loader"><em class="xref std std-term">loader</em></a> object.</dd> <dt id="term-interactive">interactive</dt> <dd>Python has an interactive interpreter which means you can enter statements and expressions at the interpreter prompt, immediately execute them and see their results. Just launch <tt class="docutils literal"><span class="pre">python</span></tt> with no arguments (possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules and packages (remember <tt class="docutils literal"><span class="pre">help(x)</span></tt>).</dd> <dt id="term-interpreted">interpreted</dt> <dd>Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because of the presence of the bytecode compiler. This means that source files can be run directly without explicitly creating an executable which is then run. Interpreted languages typically have a shorter development/debug cycle than compiled ones, though their programs generally also run more slowly. See also <a class="reference internal" href="#term-interactive"><em class="xref std std-term">interactive</em></a>.</dd> <dt id="term-iterable">iterable</dt> <dd>An object capable of returning its members one at a time. Examples of iterables include all sequence types (such as <a class="reference internal" href="library/functions.html#list" title="list"><tt class="xref py py-class docutils literal"><span class="pre">list</span></tt></a>, <a class="reference internal" href="library/functions.html#str" title="str"><tt class="xref py py-class docutils literal"><span class="pre">str</span></tt></a>, and <a class="reference internal" href="library/functions.html#tuple" title="tuple"><tt class="xref py py-class docutils literal"><span class="pre">tuple</span></tt></a>) and some non-sequence types like <a class="reference internal" href="library/stdtypes.html#dict" title="dict"><tt class="xref py py-class docutils literal"><span class="pre">dict</span></tt></a> and <a class="reference internal" href="library/functions.html#file" title="file"><tt class="xref py py-class docutils literal"><span class="pre">file</span></tt></a> and objects of any classes you define with an <a class="reference internal" href="reference/datamodel.html#object.__iter__" title="object.__iter__"><tt class="xref py py-meth docutils literal"><span class="pre">__iter__()</span></tt></a> or <a class="reference internal" href="reference/datamodel.html#object.__getitem__" title="object.__getitem__"><tt class="xref py py-meth docutils literal"><span class="pre">__getitem__()</span></tt></a> method. Iterables can be used in a <a class="reference internal" href="reference/compound_stmts.html#for"><tt class="xref std std-keyword docutils literal"><span class="pre">for</span></tt></a> loop and in many other places where a sequence is needed (<a class="reference internal" href="library/functions.html#zip" title="zip"><tt class="xref py py-func docutils literal"><span class="pre">zip()</span></tt></a>, <a class="reference internal" href="library/functions.html#map" title="map"><tt class="xref py py-func docutils literal"><span class="pre">map()</span></tt></a>, ...). When an iterable object is passed as an argument to the built-in function <a class="reference internal" href="library/functions.html#iter" title="iter"><tt class="xref py py-func docutils literal"><span class="pre">iter()</span></tt></a>, it returns an iterator for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to call <a class="reference internal" href="library/functions.html#iter" title="iter"><tt class="xref py py-func docutils literal"><span class="pre">iter()</span></tt></a> or deal with iterator objects yourself. The <tt class="docutils literal"><span class="pre">for</span></tt> statement does that automatically for you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also <a class="reference internal" href="#term-iterator"><em class="xref std std-term">iterator</em></a>, <a class="reference internal" href="#term-sequence"><em class="xref std std-term">sequence</em></a>, and <a class="reference internal" href="#term-generator"><em class="xref std std-term">generator</em></a>.</dd> <dt id="term-iterator">iterator</dt> <dd><p class="first">An object representing a stream of data. Repeated calls to the iterator’s <a class="reference internal" href="library/functions.html#next" title="next"><tt class="xref py py-meth docutils literal"><span class="pre">next()</span></tt></a> method return successive items in the stream. When no more data are available a <a class="reference internal" href="library/exceptions.html#exceptions.StopIteration" title="exceptions.StopIteration"><tt class="xref py py-exc docutils literal"><span class="pre">StopIteration</span></tt></a> exception is raised instead. At this point, the iterator object is exhausted and any further calls to its <a class="reference internal" href="library/functions.html#next" title="next"><tt class="xref py py-meth docutils literal"><span class="pre">next()</span></tt></a> method just raise <a class="reference internal" href="library/exceptions.html#exceptions.StopIteration" title="exceptions.StopIteration"><tt class="xref py py-exc docutils literal"><span class="pre">StopIteration</span></tt></a> again. Iterators are required to have an <a class="reference internal" href="reference/datamodel.html#object.__iter__" title="object.__iter__"><tt class="xref py py-meth docutils literal"><span class="pre">__iter__()</span></tt></a> method that returns the iterator object itself so every iterator is also iterable and may be used in most places where other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container object (such as a <a class="reference internal" href="library/functions.html#list" title="list"><tt class="xref py py-class docutils literal"><span class="pre">list</span></tt></a>) produces a fresh new iterator each time you pass it to the <a class="reference internal" href="library/functions.html#iter" title="iter"><tt class="xref py py-func docutils literal"><span class="pre">iter()</span></tt></a> function or use it in a <a class="reference internal" href="reference/compound_stmts.html#for"><tt class="xref std std-keyword docutils literal"><span class="pre">for</span></tt></a> loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous iteration pass, making it appear like an empty container.</p> <p class="last">More information can be found in <a class="reference internal" href="library/stdtypes.html#typeiter"><em>Iterator Types</em></a>.</p> </dd> <dt id="term-key-function">key function</dt> <dd><p class="first">A key function or collation function is a callable that returns a value used for sorting or ordering. For example, <a class="reference internal" href="library/locale.html#locale.strxfrm" title="locale.strxfrm"><tt class="xref py py-func docutils literal"><span class="pre">locale.strxfrm()</span></tt></a> is used to produce a sort key that is aware of locale specific sort conventions.</p> <p>A number of tools in Python accept key functions to control how elements are ordered or grouped. They include <a class="reference internal" href="library/functions.html#min" title="min"><tt class="xref py py-func docutils literal"><span class="pre">min()</span></tt></a>, <a class="reference internal" href="library/functions.html#max" title="max"><tt class="xref py py-func docutils literal"><span class="pre">max()</span></tt></a>, <a class="reference internal" href="library/functions.html#sorted" title="sorted"><tt class="xref py py-func docutils literal"><span class="pre">sorted()</span></tt></a>, <tt class="xref py py-meth docutils literal"><span class="pre">list.sort()</span></tt>, <a class="reference internal" href="library/heapq.html#heapq.nsmallest" title="heapq.nsmallest"><tt class="xref py py-func docutils literal"><span class="pre">heapq.nsmallest()</span></tt></a>, <a class="reference internal" href="library/heapq.html#heapq.nlargest" title="heapq.nlargest"><tt class="xref py py-func docutils literal"><span class="pre">heapq.nlargest()</span></tt></a>, and <a class="reference internal" href="library/itertools.html#itertools.groupby" title="itertools.groupby"><tt class="xref py py-func docutils literal"><span class="pre">itertools.groupby()</span></tt></a>.</p> <p class="last">There are several ways to create a key function. For example. the <a class="reference internal" href="library/stdtypes.html#str.lower" title="str.lower"><tt class="xref py py-meth docutils literal"><span class="pre">str.lower()</span></tt></a> method can serve as a key function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a <a class="reference internal" href="reference/expressions.html#lambda"><tt class="xref std std-keyword docutils literal"><span class="pre">lambda</span></tt></a> expression such as <tt class="docutils literal"><span class="pre">lambda</span> <span class="pre">r:</span> <span class="pre">(r[0],</span> <span class="pre">r[2])</span></tt>. Also, the <a class="reference internal" href="library/operator.html#module-operator" title="operator: Functions corresponding to the standard operators."><tt class="xref py py-mod docutils literal"><span class="pre">operator</span></tt></a> module provides three key function constructors: <a class="reference internal" href="library/operator.html#operator.attrgetter" title="operator.attrgetter"><tt class="xref py py-func docutils literal"><span class="pre">attrgetter()</span></tt></a>, <a class="reference internal" href="library/operator.html#operator.itemgetter" title="operator.itemgetter"><tt class="xref py py-func docutils literal"><span class="pre">itemgetter()</span></tt></a>, and <a class="reference internal" href="library/operator.html#operator.methodcaller" title="operator.methodcaller"><tt class="xref py py-func docutils literal"><span class="pre">methodcaller()</span></tt></a>. See the <a class="reference internal" href="howto/sorting.html#sortinghowto"><em>Sorting HOW TO</em></a> for examples of how to create and use key functions.</p> </dd> <dt id="term-keyword-argument">keyword argument</dt> <dd>See <a class="reference internal" href="#term-argument"><em class="xref std std-term">argument</em></a>.</dd> <dt id="term-lambda">lambda</dt> <dd>An anonymous inline function consisting of a single <a class="reference internal" href="#term-expression"><em class="xref std std-term">expression</em></a> which is evaluated when the function is called. The syntax to create a lambda function is <tt class="docutils literal"><span class="pre">lambda</span> <span class="pre">[arguments]:</span> <span class="pre">expression</span></tt></dd> <dt id="term-lbyl">LBYL</dt> <dd><p class="first">Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This style contrasts with the <a class="reference internal" href="#term-eafp"><em class="xref std std-term">EAFP</em></a> approach and is characterized by the presence of many <a class="reference internal" href="reference/compound_stmts.html#if"><tt class="xref std std-keyword docutils literal"><span class="pre">if</span></tt></a> statements.</p> <p class="last">In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the looking” and “the leaping”. For example, the code, <tt class="docutils literal"><span class="pre">if</span> <span class="pre">key</span> <span class="pre">in</span> <span class="pre">mapping:</span> <span class="pre">return</span> <span class="pre">mapping[key]</span></tt> can fail if another thread removes <em>key</em> from <em>mapping</em> after the test, but before the lookup. This issue can be solved with locks or by using the EAFP approach.</p> </dd> <dt id="term-list">list</dt> <dd>A built-in Python <a class="reference internal" href="#term-sequence"><em class="xref std std-term">sequence</em></a>. Despite its name it is more akin to an array in other languages than to a linked list since access to elements are O(1).</dd> <dt id="term-list-comprehension">list comprehension</dt> <dd>A compact way to process all or part of the elements in a sequence and return a list with the results. <tt class="docutils literal"><span class="pre">result</span> <span class="pre">=</span> <span class="pre">["0x%02x"</span> <span class="pre">%</span> <span class="pre">x</span> <span class="pre">for</span> <span class="pre">x</span> <span class="pre">in</span> <span class="pre">range(256)</span> <span class="pre">if</span> <span class="pre">x</span> <span class="pre">%</span> <span class="pre">2</span> <span class="pre">==</span> <span class="pre">0]</span></tt> generates a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The <a class="reference internal" href="reference/compound_stmts.html#if"><tt class="xref std std-keyword docutils literal"><span class="pre">if</span></tt></a> clause is optional. If omitted, all elements in <tt class="docutils literal"><span class="pre">range(256)</span></tt> are processed.</dd> <dt id="term-loader">loader</dt> <dd>An object that loads a module. It must define a method named <tt class="xref py py-meth docutils literal"><span class="pre">load_module()</span></tt>. A loader is typically returned by a <a class="reference internal" href="#term-finder"><em class="xref std std-term">finder</em></a>. See <span class="target" id="index-5"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0302"><strong>PEP 302</strong></a> for details.</dd> <dt id="term-mapping">mapping</dt> <dd>A container object that supports arbitrary key lookups and implements the methods specified in the <a class="reference internal" href="library/collections.html#collections.Mapping" title="collections.Mapping"><tt class="xref py py-class docutils literal"><span class="pre">Mapping</span></tt></a> or <a class="reference internal" href="library/collections.html#collections.MutableMapping" title="collections.MutableMapping"><tt class="xref py py-class docutils literal"><span class="pre">MutableMapping</span></tt></a> <a class="reference internal" href="library/collections.html#collections-abstract-base-classes"><em>abstract base classes</em></a>. Examples include <a class="reference internal" href="library/stdtypes.html#dict" title="dict"><tt class="xref py py-class docutils literal"><span class="pre">dict</span></tt></a>, <a class="reference internal" href="library/collections.html#collections.defaultdict" title="collections.defaultdict"><tt class="xref py py-class docutils literal"><span class="pre">collections.defaultdict</span></tt></a>, <a class="reference internal" href="library/collections.html#collections.OrderedDict" title="collections.OrderedDict"><tt class="xref py py-class docutils literal"><span class="pre">collections.OrderedDict</span></tt></a> and <a class="reference internal" href="library/collections.html#collections.Counter" title="collections.Counter"><tt class="xref py py-class docutils literal"><span class="pre">collections.Counter</span></tt></a>.</dd> <dt id="term-metaclass">metaclass</dt> <dd><p class="first">The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The metaclass is responsible for taking those three arguments and creating the class. Most object oriented programming languages provide a default implementation. What makes Python special is that it is possible to create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation, implementing singletons, and many other tasks.</p> <p class="last">More information can be found in <a class="reference internal" href="reference/datamodel.html#metaclasses"><em>Customizing class creation</em></a>.</p> </dd> <dt id="term-method">method</dt> <dd>A function which is defined inside a class body. If called as an attribute of an instance of that class, the method will get the instance object as its first <a class="reference internal" href="#term-argument"><em class="xref std std-term">argument</em></a> (which is usually called <tt class="docutils literal"><span class="pre">self</span></tt>). See <a class="reference internal" href="#term-function"><em class="xref std std-term">function</em></a> and <a class="reference internal" href="#term-nested-scope"><em class="xref std std-term">nested scope</em></a>.</dd> <dt id="term-method-resolution-order">method resolution order</dt> <dd>Method Resolution Order is the order in which base classes are searched for a member during lookup. See <a class="reference external" href="http://www.python.org/download/releases/2.3/mro/">The Python 2.3 Method Resolution Order</a>.</dd> <dt id="term-mro">MRO</dt> <dd>See <a class="reference internal" href="#term-method-resolution-order"><em class="xref std std-term">method resolution order</em></a>.</dd> <dt id="term-mutable">mutable</dt> <dd>Mutable objects can change their value but keep their <a class="reference internal" href="library/functions.html#id" title="id"><tt class="xref py py-func docutils literal"><span class="pre">id()</span></tt></a>. See also <a class="reference internal" href="#term-immutable"><em class="xref std std-term">immutable</em></a>.</dd> <dt id="term-named-tuple">named tuple</dt> <dd><p class="first">Any tuple-like class whose indexable elements are also accessible using named attributes (for example, <a class="reference internal" href="library/time.html#time.localtime" title="time.localtime"><tt class="xref py py-func docutils literal"><span class="pre">time.localtime()</span></tt></a> returns a tuple-like object where the <em>year</em> is accessible either with an index such as <tt class="docutils literal"><span class="pre">t[0]</span></tt> or with a named attribute like <tt class="docutils literal"><span class="pre">t.tm_year</span></tt>).</p> <p class="last">A named tuple can be a built-in type such as <a class="reference internal" href="library/time.html#time.struct_time" title="time.struct_time"><tt class="xref py py-class docutils literal"><span class="pre">time.struct_time</span></tt></a>, or it can be created with a regular class definition. A full featured named tuple can also be created with the factory function <a class="reference internal" href="library/collections.html#collections.namedtuple" title="collections.namedtuple"><tt class="xref py py-func docutils literal"><span class="pre">collections.namedtuple()</span></tt></a>. The latter approach automatically provides extra features such as a self-documenting representation like <tt class="docutils literal"><span class="pre">Employee(name='jones',</span> <span class="pre">title='programmer')</span></tt>.</p> </dd> <dt id="term-namespace">namespace</dt> <dd>The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity by preventing naming conflicts. For instance, the functions <tt class="xref py py-func docutils literal"><span class="pre">__builtin__.open()</span></tt> and <a class="reference internal" href="library/os.html#os.open" title="os.open"><tt class="xref py py-func docutils literal"><span class="pre">os.open()</span></tt></a> are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear which module implements a function. For instance, writing <a class="reference internal" href="library/random.html#random.seed" title="random.seed"><tt class="xref py py-func docutils literal"><span class="pre">random.seed()</span></tt></a> or <a class="reference internal" href="library/itertools.html#itertools.izip" title="itertools.izip"><tt class="xref py py-func docutils literal"><span class="pre">itertools.izip()</span></tt></a> makes it clear that those functions are implemented by the <a class="reference internal" href="library/random.html#module-random" title="random: Generate pseudo-random numbers with various common distributions."><tt class="xref py py-mod docutils literal"><span class="pre">random</span></tt></a> and <a class="reference internal" href="library/itertools.html#module-itertools" title="itertools: Functions creating iterators for efficient looping."><tt class="xref py py-mod docutils literal"><span class="pre">itertools</span></tt></a> modules, respectively.</dd> <dt id="term-nested-scope">nested scope</dt> <dd>The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another function can refer to variables in the outer function. Note that nested scopes work only for reference and not for assignment which will always write to the innermost scope. In contrast, local variables both read and write in the innermost scope. Likewise, global variables read and write to the global namespace.</dd> <dt id="term-new-style-class">new-style class</dt> <dd><p class="first">Any class which inherits from <a class="reference internal" href="library/functions.html#object" title="object"><tt class="xref py py-class docutils literal"><span class="pre">object</span></tt></a>. This includes all built-in types like <a class="reference internal" href="library/functions.html#list" title="list"><tt class="xref py py-class docutils literal"><span class="pre">list</span></tt></a> and <a class="reference internal" href="library/stdtypes.html#dict" title="dict"><tt class="xref py py-class docutils literal"><span class="pre">dict</span></tt></a>. Only new-style classes can use Python’s newer, versatile features like <a class="reference internal" href="reference/datamodel.html#__slots__" title="__slots__"><tt class="xref py py-attr docutils literal"><span class="pre">__slots__</span></tt></a>, descriptors, properties, and <a class="reference internal" href="reference/datamodel.html#object.__getattribute__" title="object.__getattribute__"><tt class="xref py py-meth docutils literal"><span class="pre">__getattribute__()</span></tt></a>.</p> <p class="last">More information can be found in <a class="reference internal" href="reference/datamodel.html#newstyle"><em>New-style and classic classes</em></a>.</p> </dd> <dt id="term-object">object</dt> <dd>Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any <a class="reference internal" href="#term-new-style-class"><em class="xref std std-term">new-style class</em></a>.</dd> <dt id="term-parameter">parameter</dt> <dd><p class="first">A named entity in a <a class="reference internal" href="#term-function"><em class="xref std std-term">function</em></a> (or method) definition that specifies an <a class="reference internal" href="#term-argument"><em class="xref std std-term">argument</em></a> (or in some cases, arguments) that the function can accept. There are four types of parameters:</p> <ul> <li><p class="first"><em class="dfn">positional-or-keyword</em>: specifies an argument that can be passed either <a class="reference internal" href="#term-argument"><em class="xref std std-term">positionally</em></a> or as a <a class="reference internal" href="#term-argument"><em class="xref std std-term">keyword argument</em></a>. This is the default kind of parameter, for example <em>foo</em> and <em>bar</em> in the following:</p> <div class="highlight-python"><div class="highlight"><pre><span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="n">foo</span><span class="p">,</span> <span class="n">bar</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span> <span class="o">...</span> </pre></div> </div> </li> <li><p class="first"><em class="dfn">positional-only</em>: specifies an argument that can be supplied only by position. Python has no syntax for defining positional-only parameters. However, some built-in functions have positional-only parameters (e.g. <a class="reference internal" href="library/functions.html#abs" title="abs"><tt class="xref py py-func docutils literal"><span class="pre">abs()</span></tt></a>).</p> </li> <li><p class="first"><em class="dfn">var-positional</em>: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any positional arguments already accepted by other parameters). Such a parameter can be defined by prepending the parameter name with <tt class="docutils literal"><span class="pre">*</span></tt>, for example <em>args</em> in the following:</p> <div class="highlight-python"><div class="highlight"><pre><span class="k">def</span> <span class="nf">func</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span> <span class="o">...</span> </pre></div> </div> </li> <li><p class="first"><em class="dfn">var-keyword</em>: specifies that arbitrarily many keyword arguments can be provided (in addition to any keyword arguments already accepted by other parameters). Such a parameter can be defined by prepending the parameter name with <tt class="docutils literal"><span class="pre">**</span></tt>, for example <em>kwargs</em> in the example above.</p> </li> </ul> <p>Parameters can specify both optional and required arguments, as well as default values for some optional arguments.</p> <p class="last">See also the <a class="reference internal" href="#term-argument"><em class="xref std std-term">argument</em></a> glossary entry, the FAQ question on <a class="reference internal" href="faq/programming.html#faq-argument-vs-parameter"><em>the difference between arguments and parameters</em></a>, and the <a class="reference internal" href="reference/compound_stmts.html#function"><em>Function definitions</em></a> section.</p> </dd> <dt id="term-positional-argument">positional argument</dt> <dd>See <a class="reference internal" href="#term-argument"><em class="xref std std-term">argument</em></a>.</dd> <dt id="term-python-3000">Python 3000</dt> <dd>Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in the distant future.) This is also abbreviated “Py3k”.</dd> <dt id="term-pythonic">Pythonic</dt> <dd><p class="first">An idea or piece of code which closely follows the most common idioms of the Python language, rather than implementing code using concepts common to other languages. For example, a common idiom in Python is to loop over all elements of an iterable using a <a class="reference internal" href="reference/compound_stmts.html#for"><tt class="xref std std-keyword docutils literal"><span class="pre">for</span></tt></a> statement. Many other languages don’t have this type of construct, so people unfamiliar with Python sometimes use a numerical counter instead:</p> <div class="highlight-python"><div class="highlight"><pre><span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">food</span><span class="p">)):</span> <span class="k">print</span> <span class="n">food</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> </pre></div> </div> <p>As opposed to the cleaner, Pythonic method:</p> <div class="last highlight-python"><div class="highlight"><pre><span class="k">for</span> <span class="n">piece</span> <span class="ow">in</span> <span class="n">food</span><span class="p">:</span> <span class="k">print</span> <span class="n">piece</span> </pre></div> </div> </dd> <dt id="term-reference-count">reference count</dt> <dd>The number of references to an object. When the reference count of an object drops to zero, it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of the <a class="reference internal" href="#term-cpython"><em class="xref std std-term">CPython</em></a> implementation. The <a class="reference internal" href="library/sys.html#module-sys" title="sys: Access system-specific parameters and functions."><tt class="xref py py-mod docutils literal"><span class="pre">sys</span></tt></a> module defines a <a class="reference internal" href="library/sys.html#sys.getrefcount" title="sys.getrefcount"><tt class="xref py py-func docutils literal"><span class="pre">getrefcount()</span></tt></a> function that programmers can call to return the reference count for a particular object.</dd> <dt id="term-slots">__slots__</dt> <dd>A declaration inside a <a class="reference internal" href="#term-new-style-class"><em class="xref std std-term">new-style class</em></a> that saves memory by pre-declaring space for instance attributes and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for rare cases where there are large numbers of instances in a memory-critical application.</dd> <dt id="term-sequence">sequence</dt> <dd>An <a class="reference internal" href="#term-iterable"><em class="xref std std-term">iterable</em></a> which supports efficient element access using integer indices via the <a class="reference internal" href="reference/datamodel.html#object.__getitem__" title="object.__getitem__"><tt class="xref py py-meth docutils literal"><span class="pre">__getitem__()</span></tt></a> special method and defines a <a class="reference internal" href="library/functions.html#len" title="len"><tt class="xref py py-meth docutils literal"><span class="pre">len()</span></tt></a> method that returns the length of the sequence. Some built-in sequence types are <a class="reference internal" href="library/functions.html#list" title="list"><tt class="xref py py-class docutils literal"><span class="pre">list</span></tt></a>, <a class="reference internal" href="library/functions.html#str" title="str"><tt class="xref py py-class docutils literal"><span class="pre">str</span></tt></a>, <a class="reference internal" href="library/functions.html#tuple" title="tuple"><tt class="xref py py-class docutils literal"><span class="pre">tuple</span></tt></a>, and <a class="reference internal" href="library/functions.html#unicode" title="unicode"><tt class="xref py py-class docutils literal"><span class="pre">unicode</span></tt></a>. Note that <a class="reference internal" href="library/stdtypes.html#dict" title="dict"><tt class="xref py py-class docutils literal"><span class="pre">dict</span></tt></a> also supports <a class="reference internal" href="reference/datamodel.html#object.__getitem__" title="object.__getitem__"><tt class="xref py py-meth docutils literal"><span class="pre">__getitem__()</span></tt></a> and <a class="reference internal" href="reference/datamodel.html#object.__len__" title="object.__len__"><tt class="xref py py-meth docutils literal"><span class="pre">__len__()</span></tt></a>, but is considered a mapping rather than a sequence because the lookups use arbitrary <a class="reference internal" href="#term-immutable"><em class="xref std std-term">immutable</em></a> keys rather than integers.</dd> <dt id="term-slice">slice</dt> <dd>An object usually containing a portion of a <a class="reference internal" href="#term-sequence"><em class="xref std std-term">sequence</em></a>. A slice is created using the subscript notation, <tt class="docutils literal"><span class="pre">[]</span></tt> with colons between numbers when several are given, such as in <tt class="docutils literal"><span class="pre">variable_name[1:3:5]</span></tt>. The bracket (subscript) notation uses <a class="reference internal" href="library/functions.html#slice" title="slice"><tt class="xref py py-class docutils literal"><span class="pre">slice</span></tt></a> objects internally (or in older versions, <a class="reference internal" href="reference/datamodel.html#object.__getslice__" title="object.__getslice__"><tt class="xref py py-meth docutils literal"><span class="pre">__getslice__()</span></tt></a> and <a class="reference internal" href="reference/datamodel.html#object.__setslice__" title="object.__setslice__"><tt class="xref py py-meth docutils literal"><span class="pre">__setslice__()</span></tt></a>).</dd> <dt id="term-special-method">special method</dt> <dd>A method that is called implicitly by Python to execute a certain operation on a type, such as addition. Such methods have names starting and ending with double underscores. Special methods are documented in <a class="reference internal" href="reference/datamodel.html#specialnames"><em>Special method names</em></a>.</dd> <dt id="term-statement">statement</dt> <dd>A statement is part of a suite (a “block” of code). A statement is either an <a class="reference internal" href="#term-expression"><em class="xref std std-term">expression</em></a> or a one of several constructs with a keyword, such as <a class="reference internal" href="reference/compound_stmts.html#if"><tt class="xref std std-keyword docutils literal"><span class="pre">if</span></tt></a>, <a class="reference internal" href="reference/compound_stmts.html#while"><tt class="xref std std-keyword docutils literal"><span class="pre">while</span></tt></a> or <a class="reference internal" href="reference/compound_stmts.html#for"><tt class="xref std std-keyword docutils literal"><span class="pre">for</span></tt></a>.</dd> <dt id="term-struct-sequence">struct sequence</dt> <dd>A tuple with named elements. Struct sequences expose an interface similiar to <a class="reference internal" href="#term-named-tuple"><em class="xref std std-term">named tuple</em></a> in that elements can either be accessed either by index or as an attribute. However, they do not have any of the named tuple methods like <a class="reference internal" href="library/collections.html#collections.somenamedtuple._make" title="collections.somenamedtuple._make"><tt class="xref py py-meth docutils literal"><span class="pre">_make()</span></tt></a> or <a class="reference internal" href="library/collections.html#collections.somenamedtuple._asdict" title="collections.somenamedtuple._asdict"><tt class="xref py py-meth docutils literal"><span class="pre">_asdict()</span></tt></a>. Examples of struct sequences include <a class="reference internal" href="library/sys.html#sys.float_info" title="sys.float_info"><tt class="xref py py-data docutils literal"><span class="pre">sys.float_info</span></tt></a> and the return value of <a class="reference internal" href="library/os.html#os.stat" title="os.stat"><tt class="xref py py-func docutils literal"><span class="pre">os.stat()</span></tt></a>.</dd> <dt id="term-triple-quoted-string">triple-quoted string</dt> <dd>A string which is bound by three instances of either a quotation mark (”) or an apostrophe (‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a number of reasons. They allow you to include unescaped single and double quotes within a string and they can span multiple lines without the use of the continuation character, making them especially useful when writing docstrings.</dd> <dt id="term-type">type</dt> <dd>The type of a Python object determines what kind of object it is; every object has a type. An object’s type is accessible as its <tt class="xref py py-attr docutils literal"><span class="pre">__class__</span></tt> attribute or can be retrieved with <tt class="docutils literal"><span class="pre">type(obj)</span></tt>.</dd> <dt id="term-universal-newlines">universal newlines</dt> <dd>A manner of interpreting text streams in which all of the following are recognized as ending a line: the Unix end-of-line convention <tt class="docutils literal"><span class="pre">'\n'</span></tt>, the Windows convention <tt class="docutils literal"><span class="pre">'\r\n'</span></tt>, and the old Macintosh convention <tt class="docutils literal"><span class="pre">'\r'</span></tt>. See <span class="target" id="index-6"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-0278"><strong>PEP 278</strong></a> and <span class="target" id="index-7"></span><a class="pep reference external" href="http://www.python.org/dev/peps/pep-3116"><strong>PEP 3116</strong></a>, as well as <a class="reference internal" href="library/stdtypes.html#str.splitlines" title="str.splitlines"><tt class="xref py py-func docutils literal"><span class="pre">str.splitlines()</span></tt></a> for an additional use.</dd> <dt id="term-view">view</dt> <dd>The objects returned from <a class="reference internal" href="library/stdtypes.html#dict.viewkeys" title="dict.viewkeys"><tt class="xref py py-meth docutils literal"><span class="pre">dict.viewkeys()</span></tt></a>, <a class="reference internal" href="library/stdtypes.html#dict.viewvalues" title="dict.viewvalues"><tt class="xref py py-meth docutils literal"><span class="pre">dict.viewvalues()</span></tt></a>, and <a class="reference internal" href="library/stdtypes.html#dict.viewitems" title="dict.viewitems"><tt class="xref py py-meth docutils literal"><span class="pre">dict.viewitems()</span></tt></a> are called dictionary views. They are lazy sequences that will see changes in the underlying dictionary. To force the dictionary view to become a full list use <tt class="docutils literal"><span class="pre">list(dictview)</span></tt>. See <a class="reference internal" href="library/stdtypes.html#dict-views"><em>Dictionary view objects</em></a>.</dd> <dt id="term-virtual-machine">virtual machine</dt> <dd>A computer defined entirely in software. Python’s virtual machine executes the <a class="reference internal" href="#term-bytecode"><em class="xref std std-term">bytecode</em></a> emitted by the bytecode compiler.</dd> <dt id="term-zen-of-python">Zen of Python</dt> <dd>Listing of Python design principles and philosophies that are helpful in understanding and using the language. The listing can be found by typing “<tt class="docutils literal"><span class="pre">import</span> <span class="pre">this</span></tt>” at the interactive prompt.</dd> </dl> </div> </div> </div> </div> <div class="sphinxsidebar"> <div class="sphinxsidebarwrapper"> <h4>Previous topic</h4> <p class="topless"><a href="faq/installed.html" title="previous chapter">“Why is Python Installed on my Computer?” FAQ</a></p> <h4>Next topic</h4> <p class="topless"><a href="about.html" title="next chapter">About these documents</a></p> <h3>This Page</h3> <ul class="this-page-menu"> <li><a href="bugs.html">Report a Bug</a></li> <li><a href="_sources/glossary.txt" rel="nofollow">Show Source</a></li> </ul> <div id="searchbox" style="display: none"> <h3>Quick search</h3> <form class="search" action="search.html" method="get"> <input type="text" name="q" /> <input type="submit" value="Go" /> <input type="hidden" name="check_keywords" value="yes" /> <input type="hidden" name="area" value="default" /> </form> <p class="searchtip" style="font-size: 90%"> Enter search terms or a module, class or function name. </p> </div> <script type="text/javascript">$('#searchbox').show(0);</script> </div> </div> <div class="clearer"></div> </div> <div class="related"> <h3>Navigation</h3> <ul> <li class="right" style="margin-right: 10px"> <a href="genindex.html" title="General Index" >index</a></li> <li class="right" > <a href="py-modindex.html" title="Python Module Index" >modules</a> |</li> <li class="right" > <a href="about.html" title="About these documents" >next</a> |</li> <li class="right" > <a href="faq/installed.html" title="“Why is Python Installed on my Computer?” FAQ" >previous</a> |</li> <li><img src="_static/py.png" alt="" style="vertical-align: middle; margin-top: -1px"/></li> <li><a href="http://www.python.org/">Python</a> »</li> <li> <a href="index.html">Python 2.7.5 documentation</a> » </li> </ul> </div> <div class="footer"> © <a href="copyright.html">Copyright</a> 1990-2020, Python Software Foundation. <br /> The Python Software Foundation is a non-profit corporation. <a href="http://www.python.org/psf/donations/">Please donate.</a> <br /> Last updated on Oct 13, 2020. <a href="bugs.html">Found a bug</a>? <br /> Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.3. </div> </body> </html>
Close